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It is known that the mass transfer of substances capable of changing surface tension 
and interphase chemical reactions may lead to the development of surface-tension gradients. 
As a result of the Marangoni effect [i], these gradients can result in instability of the 
phase boundary and lead to the formation of near-surface convection structures, as well 
as to the development of interphase convection and turbulence within the phases [2]. The 
study of the hydrodynamic stability of a reacting liquid drop surrounded by a gas or another 
immiscible liquid is of special interest in connection with the problem of intensifying 
mass transfer processes in the chemisorption of gases and in liquid extraction accompanied 
by chemical reactions [3]. 

The problem of the stability of a spherical phase boundary (the surface of a drop 
or bubble) in the presence of surface reactions and the transfer of surfactants was examined 
in the most general form in [4, 5]. The study [4] presented a linear analysis of the stab- 
ility of the steady state, with allowance for an arbitrary number of reacting substances 
and chemical reactions on the surface. The dependence of the rates of these reactions on 
concentration was described by a general function, a dispersion relation was obtained, and 
this relation was analyzed in a small-drop approximation for a single reacting substance. 
Here, a detailed examination was made of the deformational stability of the drop surface. 
The results of this work were generalized in [5], where, under the condition of local adsorp- 
tive equilibrium between the phase boundary (interface) and the adjacent layer of liquid, 
the authors considered the convective diffusion of the reactants in the phases. 

Here, along with the phenomena considered previously, we examinetheeffectof surfactant 
adsorption at a finite rate on the hydrodynamic stability of a drop. This Case contrasts 
with the case examined in the previous investigations, where the adsorption rate was assumed 
to be infinitely large. We gave special attention to the onset of instability and to finding 
critical values of dimensionless parameters characterizing the rate of the interfacial chem- 
ical reaction and the surface activity of the reactants being transported. 

i. We will examine a drop of liquid immersed in an infinite, homogeneous, quiescent 
liquid that does not mix with the first liquid. In each phase, we dissolve a substance 
which has surface-active properties and which does not dissolve in the other phase. Diffusion 
brings the substances to the interface, where they are adsorbed and react with one another. 
The rate of adsorption and desorption of the respective substances at the interface is compar- 
able with the rate of the chemical reaction and the rate at which diffusion transports the 
substances to the interface. The reaciton products do not have surface-active properties 
and are rapidly (compared to the adsorption of the surfactants) removed from the phase bound- 
ary. The reaction being examined belongs to a broad class of interfacial reactions in which 
thermal effects are very slight [6]. Thus, in studying the dynamics of the phase boundary, 
we will ignore thermocapillary effects compared to concentration-capillary effects caused 
by the dependence of surface tension on the concentration of the reactants. Here, we make 
allowance for the effects associated with the presence of surface viscosity and the inertia 
of the adsorbed surfactants, since these effects play a significant role in the kinetics 
of certain interfacial reactions [7]. 

We choose a spherical coordinate system with its origin at the center of mass of the 
drop. The steady-state concentrations of the reactants in the undisturbed system will be 
assumed to have a spherically symmetrical distribution in conformity with the law C 1 C,0(i 

--n 1 
--a,r ), C 2 = C2o(i--a2rn2), where C i is the concentration of reactants in the volumes of the 
phases; r is the radial coordinate; Ci0 (i = i, 2) is the concentration of the reactants 
at infinity and at the center of the drop, respectively; ai, n i > 0 are constants; the sub- 
script i = 1 pertains to the external liquid, while i = 2 pertains to the liquid of the 
drop. Such concentration distributions are solutions of the steady-state equations: a) 
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AC i = 0 (n i = i, n2 = 0), b) AC i = Qi = const (-n i = n 2 = 2), c) AC i = 0, AC 2 = Q (nl = 
i, n 2 = 2). Case "b," corresponding to the formation of surface-active reactants in the 
volumes of the phases due to the presence of stationary, uniformly-distributed sources 
(such as sources resulting from a zeroth-order bulk reaction), was examined in [5]. In 
case "c," the surfactant is formed inside the drop as a result of a zeroth-order reaction, 
while sources are absent outside the drop. For other values of the exponents n i and n2, 
the stationary concentration profiles being examined can serve as approximations of the 
actual concentration distributions corresponding to volumetric sources or sinks of another 
type. The thus-chosen concentration distributions for the reacting surfactants make it 
possible to determine the effect of the stationary concentration profiles on the character 
of stability of the system. The drop surface will be assumed to be spherical and undeform- 
able (the surface tension o is great). Here, by the stability of the phase boundary, we 
mean stability against the formation of near-surface convective motions of the liquid. 

Study of the hydrodynamic stability of a drop involves the solution of a stability 
problem concerning infinitesimal perturbations of the velocity of the liquid flow and the 
concentrations of surfactants dissolved in both phases and adsorbed on the interface. 

The velocity perturbations are described in the chosen spherical coordinate system 
by dimensionless linearized Navier-Stokes equations, the equations of continuity of'the 
flow, and boundary conditions expressing impermeability and the absence of slip at the in- 
terface: 

dt~i 

7Tt 
~,, + Ri -i A~i -- -= ui -- ., ~ - -  

r "  r -  s i n  0 ~]0 r ~ s i n  0 ' 

1 a I a ( s i nOv~)+  1 awi 
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v~r/a, m~/a) ,  p~ = .p~ ' / p~a- ,  R~ = a-,'viz. 

(I.i) 

(i.2) 

(1.3) 

Here, t' is time; r' is the radial coordinate; u!, v!, and w! are components of velocity 
I I . ~ . 1 1 

with respect to (r', 0, ~ ; Pi' Pi are density and pressure; v i is the kinematic viscosity; 
T is the characteristic time of surface chemical reaction; a is the radius of the drop. The 
equations for the remaining velocity components are not written because the problem reduces 
to the solution of the equation for the radial component of velocity. 

The perturbations of the bulk and surface concentrations are described by linearized 
equations of convective diffusion in the volume of the phases and the balance of the adsorbed 
substance on the drop surface, as well as by the balance condition for the diffusive and 
adsorptive flows at the interface: 

()zi i)Zio --I . 

a--f + u~ 7f7 = Zi Az~, 

i Ozi 

j = l , 2  
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(1.5) 
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Here, C i are the perturbations of the concentrations of the reactants in the i-th phase; F~ 
is the surface concentration of the i-th reactant; F~ is the limiting surface concentration; 
D i and Dsi are the bulk and surface diffusion coefficients; Fi(r ~, r~) and Ji (Ci, FI, F2) 
are functions which describe the kinetics of surface chemical reaction and adsorption; the 
subscript 0 denotes the steady state. 

The perturbations of flow velocity and surface concentration must satisfy balance 
conditions for the normal and tangential components of the stresses at the interface, with 
allowance for the Marangoni effect, surface viscosities, and the inertia of the adsorbed 
substance [8]. Since the interfacial tension is large and the drop is assumed to be unde- 
formable, the condition for the normal stresses reduces to a pressure jump at the interface. 
The balance conditions for the shear stresses take the form 

av 1 [au z avt ) [0% av 2 + + 

It_i_ [...0_0 (v 1 sin O) + + 
+ M 2 ~ Z +  xl  Of} |sinO[aO Oq)]) 
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t [Aj O~ 1 M d.~.?2~ 1 0 / 1 ( ' OWl) 1 

_ e  ~ e ( ~  ~i.o))l}, 
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(1.7) 

(1.8) 

where qi are the bulk viscosities; k and e are the surface dilatational and shear viscosi- 
ties; M i are the Marangoni numbers. 

2. Using continuity equation (1.2), we can rewrite Eq. (i.i) as follows: 

Ou~/Ot = - -  Opt~Or+ B T ~ r - l A ( r u i ) .  ( 2 . 1 )  

Since pressure is a harmonic function in the linearized Navier-Stokes equation (which 
does not contain convective terms), we have the following, with allowance for the conditions 
of boundedness inside the drop and at infinity: 

( Y ~ ( O , ~ )  are spherical functions, bms 

We seek a solution of (2.1) in the 

~  t 
p,  = a , z r - Z - l Y  l({9, ~ )e  , 

/=0  

COlt 
a.,.g'~Yz (0, q~) e , Y l  (0, q)) ~_~ b~lY l  (0, (p) 

/=0 m = - - I  

a i s  ( i  = 1, 2) a r e  a r b i t r a r y  c o n s t a n t s ) .  
form 

( 2 . 2 )  

u~ = ~ r-lUit  (r) Yl (0, ~) e ~t. ( 2 . 3 )  
l=1  

Here, the mode with the number s = 0 is not considered, since the liquids are immiscible. 
For the sake of brevity, the subscript s with m will be dropped. 

Inserting (2.2) and (2.3) into (2.1), we obtain equations for Uis The solutions of 
these equations, bounded at the center of the drop and approaching zero at infinity, will 
be written in the form 

U u  = All  r -~ - I  + BIlKS+l/2 (qlr), U~l = A J  l + B~I~+1/2 (q.,r), 

Iz+1/2 (x) (a/2x)l/~ Iz+ll2(x),  K* = * = 1 + 1 / 2  (x) (n/2x) 1/' Kz+l/2 (x), 

(2.4) 

696 



where Ig+~/2(x) , KE+~/2(x) are modified spherical Bessel functions of the first and second 
kind [9]; AlE and BiE are arbitrary constants. Using the continuity equation (1.2), boundary 
conditions (1.3), and the recursion formulas for the functions I~+~/=(x) and K~+~/2(x), we 
find 

seek 

* Is 

A~t + BI~KI+,/2 (q~) = O, A.,.t + B~,It+~/~ (q~) = O, ( 2 . 5 )  
* $ 

B~q~Kz-~/., (qO + B,~q~I~+~/~ (q.,_) = O. 

Let us examine Eq. (1.4). We will assume that z~o=a~r i, z,_ o =a~r =, ha> O, n~> 0 We 
t h e  s o l u t i o n  o f  ( 1 . 4 )  i n  t h e  fo rm  

drop 

z~ = ~ Z~(r )  Yt(O, q~)e ~ ( 2 . 6 )  
l = 1  

are bounded at the center of the Then, for Zi~ , we obtain equations with solutions that 
and approach zero at infinity: 

Z ~  (r) = C l l K ~ + I / 2  (sar) + B I ~ ,  ~ (sa) I~+i/~ (sir) + ~ (r), 

Z,~ (r) = C.,_J Z + ll2 (sir) + B.~2~ (s:) K t + lt2 (s':r) + ~2~ (r); 

Is ~ --I * 
~ (r) = I~+,/2 (s~r) o W K~+I/~ (sir) hi (r) dr - -  

1 

l* 

$ - - 1  * - -  K~+I/~ (s~r) S W I~+~/.~ (s~r) hi(r) dr, ~ = d ~ d d r  = O, r = I; 
1 

( 2 . 7 )  

( 2 . 8 )  
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'h f t-~lK*~- ~ [Kt+l/,. ( ~ t )  - s~+~t-t-lr,  "* , ~lz(s 0 = %1a~nls ~ . ~. ~/~ (t) * ~ ~z+1/2 ( ~ s d ]  dt; 
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( 2 . 9 )  

h~(r) = %~r-tU~(r)  Oz~o/Or, W =  ~/(2s~r ~) ( 2 . 1 0 )  

(Wrepresents theWronskian functions K~+~/~(sir ) and I~+~/~sir) , while C~ and C~ are arbitrary 
constants). 

Let us examine boundary conditions (1.5)-(1.8). Subjecting Eq. (1.7) to the operation 
(sin 0)-~(8/38)sin ~, and Eq. (1.8) to the operation {sin0)2~0/0~ and adding the resulting 
expressions, with allowance for continuity equation (1.2), we find 

0 ~ ~'z " [ ~ 1 ~  ~ ] %-o- [ -dT(ru l )=  mx LZu~ Or r Or "~r(rZul) - -  ( 2 . 1 1 )  

[ 0 i ~ ( r iu~)+ 0 ~ ] if--7 
- -  m2 LZu" Or r Or ~r (r"u.~) + M1L"?I + M"L'ZY" " - -  • ~--7 (riuO - -  2• (r'-ul). 

We present the perturbations of the surface concentrations of the reactants in the form 

~ = ~,  FizYl (0, ~) e ~' . 
l = 1  

I n s e r t i n g  t h i s  e x p r e s s i o n  and ( 2 . 4 ) ,  ( 2 . 7 )  i n t o  ( 1 . 6 )  and u s i n g  Eqs .  ( 2 . 5 )  and t h e  r e c u r -  
sion formulas for the functions I~+i/2(x ) and K~+i/2(x), we obtain a linear homogeneous system 
of algebraic equations to determine the constants Bi~ , Fi~ , and Ci~: 

I]ai)[lE T = 0, E = (Blz, B~z, Fll, FiI, Cw C.~), 

al l  = qIKl-1/~ (ql), at2 = qzll+z/2 (qi), 
Is 

a21 qiKt- : /2  (ql) (%0) + 2m 1 + • (l + t) - -  2• + mlqlKt+~/2 (qO, a,,.2 = 

a ~  -=- 71oq~Kz*_l/2 (q,) _ b ~ l z  (,h) l z+~/2 (s~), a33 = o) + ~ ' l  (l + t) + 
�9 b Is ~ * + /11 - -  b11, az4 = / l , .  - -  by_,, a:~5 = - -  1~Kz+1/~. (sl), a41 ?'zoq~Kt-1/2 (ql), 

( 2 . 1 2 )  
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%2 = - -  b,,_~21 (s,_) K~+~I,, (s~), aaa = / ~  - -  b_,~, a ~  = ~ + z ~ ' l  (l + ~) +I . ,2- -  

- -  b.,..,, aa~ = - -  b:J~+,/.~ (s.~), a~  = ~ t  (s~) [b,J ,+~/2 (s~) + dl (s~I~+a/2 (s~)+ 

+ (l + ~) lf~*+~/., (s,))], a~:~ = b.,.~, a ~  = b~2 , ao~ --  b.~J~+~/2 (s,,) - -  

-- d 2 ($2[/+3/2 (32) ~- II~+1/2 (S.~)) (the remaining elements are zero). 
Equaging the determinant of system (2.12) to zero, we have the sought characteristic equation. 
The complete solution of this equation can be obtained only by numerical means on a computer. 
We will restrict ourselves here to study of the states with neutral stability, without oscil- 
lations, and we will analyze several important limiting cases. 

3. To find conditions of the existence of neutral, nonoscillatory states, we set the 
imaginary part of the roots of the equation A(r ~---det[lail]] = 0 equal to zero: Im co = 0, and we 
proceed to the limit Re ~0 ~ 0. Here, we divide the first column of the determinant A(~) by 
q~K~, (q~), the second by q~I~+a/2(q~), the fifth by K~+t/2(sl), and the sixth by 
I~+l;2(s2)and we pass to the limit 0~ § 0, s i + 0, qi § 0, qilsi = li = const. Using the proper- 
t~-es~ the functions K~+~/2(x), I~+~/~(x), we find 

l im xKI+I/2 (x) 
K* ~ o  l-1/., (x) 

= 2 / - -  1, liln ~' l (s ' ) I~+l/2(s l )  
,h.ql~o qlKt-1/2 (ql) 

lira xl~+l/" (x) = 2l + 3, 
* 32 x-,o 1/+3/2( ) 

lira ~l(s~)Kl*+,/2(%) 
I* --~" ~2a2rt2q~/2' 

s.2,q.z~o q2 /+3/2 (q2) 
~z~ = [(2l + 1)(2t + n~ + 1)(2l + nl - -  t ) l  -~, 

q~z2 = [(2l -~- l)(2t ~- n2 + 1)(2l -~- n2 q- 3 ) ] -L  

After some transformations, we reduce the equation of neutral stability to the form 

I Vo+~t,z Mj(z+~) Md(Z+t)] 
~;lo--B~ /11+All / 1 2 + A 1 2  1=0, 
?'0--B~ /'I+A21 /'2+A22 [ 

d~ (l + 6.) 

Bi  = d i (2/-'- t) 
Pi~Pt~ b~ biz : d i (l -i- 5~)' [ t t =  (n h + m2) (2/ + l) + ~11 (1 + 1) - -  2• 2 

(3.1) 

(6ij is the Kronecker symbol). Here, the terms fij characterize the surface chemical reaction; 
Aij-characterize the combined effect of adsorption and diffusion of the substance from the vol- 
umes of the phases; B i characterize adsorption and convective diffusion in the volumes of the 
phases. It is evident from the structure of the expressions for Aii and B i that with large 
values of d i (large diffusion coefficients) for high-mode perturbations (s >> I), it is impos- 
sible to ignore the finiteness of adsorption rate. 

Let us examine the case of a single substance in more detail. From (3.1) we have 

f = - - A  + M l ( l - ~  1 ) ( % - - B ) / ( %  + p~) ( 3 . 2 )  

( t h e  s u b s c r i p t s  w i t h  f ,  A, and  B h a v e  b e e n  d r o p p e d ) .  

E q u a t i o n  ( 3 . 2 )  i s  a g e n e r a l i z a t i o n  o f  t h e  r e l a t i o n  o b t a i n e d  i n  [ 4 ]  w i t h  a l l o w a n c e  f o r  
t h e  f i n i t e  r a t e  o f  a d s o r p t i o n  and  t h e  e x i s t e n c e  o f  an  i n i t i a l l y  n o n u n i f o r m  c o n c e n t r a t i o n  p r o f i l e  
i n  b o t h  p h a s e s .  I t  c a n  be  e x a m i n e d  as  t h e  c o n d i t i o n  f o r  t h e  c r i t i c a l  c h e m i c a l  c o e f f i c i e n t  f .  
I t  i s  e v i d e n t  t h a t  s i n c e  3 J / a F  i < 0 ,  a J / a C  i > 0 ,  t h e n  bi j  < 0, biz < 0,  A > 0 ,  w h e r e  t h e  s i g n  
o f  B d e p e n d s  on t h e  d i r e c t i o n  f r o m  w h i c h  t h e  s u b s t a n c e  i s  t r a n s p o r t e d  t o  t h e  d r o p :  s i g n  B i = 
s i g n  P i "  I t  f o l l o w s  f r o m  ( 3 . 2 )  t h a t  f o r  h y d r o d y n a m i c  i n s t a b i l i t y  t o  o c c u r ,  t h e  c r i t i c a l  v a l u e  
o f  t h e  c o e f f i c i e n t  f m u s t  be  n e g a t i v e  and  i t s  m o d u l u s  m u s t  e x c e e d  a c e r t a i n  v a l u e  d e t e r m i n e d  
by  t h e  d i f f u s i o n ,  a d s o r p t i o n ,  and  s u r f a c e  a c t i v i t y  o f  t h e  r e a c t a n t s  and  t h e  s t a t i o n a r y  c o n c e n -  
t r a t i o n  p r o f i l e .  The f o l l o w i n g  c o n c l u s i o n s  c a n  be  made a s  a r e s u l t  o f  a n a l y s i s  o f  Eq. ( 3 . 2 ) :  
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a. Let there be no initial concentration profile in the volume: B = 0. Then the fact 
that the reacting substance is charcterized by surface activity (M < 0) makes the system more 
stable. In fact, in this case, the condition of purely chemical instability f + A < 0 is re- 
placed by condition (3.2). Meanwhile, the critical value of the chemical coefficient f in- 
creases in terms of its modulus. Purely chemical instability means that small perturbations 
of the volumetric and surface concentrations increase because the rate of the interfacial re- 
action increases more slowly with an increase in reactant concentration than does the supply 
of the substance to the interface. 

b. Let there be an initially nonuniform concentration profile: B # 0. Then the crit- 
ical value of f depends appreciably on the sign and magnitude of B. In the case when the 
inertia of the substance at the interface can be ignored (70 = 0), we have f = -A - M~(s + 
I)B/Ds Thus, if the substance is surface-active and is transported to the surface of the 
drop (B > 0), then the modulus of the critical value of f decreases, i.e., the system becomes 
more unstable. Conversely, if the substance is removed from the drop (B < 0), then the system 
is stabilized. 

c. Since B depends on s then at 70 ~ 0 the activity of the surface will have different 
effects on the stability of the system for different harmonics: at 70 - B > 0, the system will 
be stabilized; at 70 - B < 0, the system will be destabilized. 

d. If the rate of adsorption is high (i.e., if adsorptive equilibrium takes place), 
then A ~ (bij/biz)di(s + 61i), and increases in proportion to Z. However, for a finite adsorp- 
tion rate, exerting a large effect on the harmonics with large numbers, A § (-bij) = const 
and, thus, the instability threshold for f is reduced. This means that a finite adsorption 
rate destabilizes the system. 

4. Let us examine the dispersion relation in an approximation in which we assume that the 
reaction is slow and that the drops are small, having two parameters: %~ = al/Di*<<l, B~I ~ 

al/a, iT<<1. The remaining dimensionless parameters will be assumed to be quantities on the 
order of 0(i). It must be noted that if d~=(C~oa/F~)%~O(1) , then Ci0a/F~Z~<<1, which 
corresponds to the case of strong surfactants. Arranging the elements of the determinant in 
a series with respect to • and R i and discarding terms on the order of O(i), we obtain the 
following characteristic equation from (2.12): 

7003 + 1.it Mll (l + t) M.,1 (l + t) 
71(i (0 2v fl l  -[- All f12 + A12 
720 1~1 -i- A~I o) 2~ /~2 + A22 

=0, 

(4.1) 

which is cubic relative to w and is still quite complicated to analyze; for a single substance, 
this equation takes the form 

Vo ~ + [Vo(/ + A) + m] ~ + ~z(] + A) -- ?oMt(l + t) = 0. ( 4 . 2 )  

In accordance with the Rouse-Hurwitz criterion, all of the solutions of (4.2) have negative 
real parts only when 

~o(! + A) + m >  0, 
~t~(/ + A) + ?o IM ll(1 + 1) ]> O. ( 4 . 3 )  

Equation (4.2) has solutions with a nonvanishing imaginary part if its discriminant is less 
than zero: 

D = (70(/+ A)- -  ~tt) ~ -  47~ lMl l ( l  + t ) < 0 .  ( 4 . 4 )  

I n e q u a l i t i e s  ( 4 . 3 ) ,  ( 4 . 4 )  make i t  p o s s i b l e  t o  c o n s t r u c t  r e g i o n s  , in  t h e  c o o r d i n a t e s  ( f ,  
IMI), c o r r e s p o n d i n g  to  d i f f e r e n t  t y p e s  o f  s t a b i l i t y  o f  t h e  sys t em ( s e e  F ig .  1) .  Broken l i n e  
I in  F ig .  1 s e p a r a t e s  t h e  r e g i o n  of  i n s t a b i l i t y  on t h e  l e f t  from t h e  r e g i o n  of  s t a b i l i t y  
l o c a t e d  on t h e  r i g h t  o f  I .  Each of  t h e s e  r e g i o n s  i s  in  t u r n  s u b d i v i d e d  by t h e  p a r a b o l a  I I  
(IM{ = (70(f + A) - D~)2/ 47~(s + i) into two subregions: i, 2, and 3, 4. Meanwhile, the 
inclined segment of the broken line touches the parabola at a point of discontinuity of the 
first derivative. Regions 2 and 3 correspond to unstable and stable regimes with oscilla- 
tions, while there are no oscillations in regions i and 4. 

It can be seen from the figure that one feature of the given system is the possibility 
of the development of instability only in the case f < fcr < 0. Here, fcr must exceed a crit- 
ical value connected with the parameters of the adsorption-desorption and diffusion processes, 
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as well as with the bulk and surface viscosities. It should also be noted that if instability 
is possible, it will occur at a value of IM[ as small as is desired. In other words, purely 
chemical instability, with as weak a connection with hydrodynamic instability as is desired 
(IMI ~ 0), leads to hydrodynamic instability. In the range -A 2 E -A --Pi/~0 < f < -A, an in- 
crease in IMI leads to stabilization of the system and the suppression of instability. At 
f < -A- pi/~0 E --A2,the system turns out to be unstable with any value of IMI. 

We should note one more interesting fact. If there is in general no connection with 
hydrodynamic instability (IMI = 0), then motion of the interface will not take place and we 
can speak only of chemical instability - which would be seen at f <--A. The presence of this 
coupling (IMI ~ 0) leads to a situation whereby stability also exists at f <-A, i.e., the 
stability threshold corresponding to fcr increases in absolute value. Thus, it can be con- 
cluded that the Marangoni effects suppress chemical instability. All of the foregoing is true only 
for modes ~ ~ i, since no hydrodynamic mode exists when ~ = 0 and, thus, the hydrodynamics 
of the system have no effect on its chemical stability. 

Now let us examine the effect of finiteness of adsorption rate on the stability of the 
system. If adsorption is rapid and if there is equilibrium between the phase boundary and the 
regions adjacent to it, then A ~ (b/bz)d~. If the adsorption rate is low, then A ~ b = const. 
An increase in ~ is accompanied by a shift of the instability region to the left, in the di- 
rection of greater absolute values of f. Meanwhile, as can be seen from the expression for 
A, this shift is larger for rapid adsorption than for slow adsorption. This means that slow 
adsorption destabilizes the system. 

It is interesting to follow the effect of dissipative processes (surface and bulk vis- 
cosities) on the stability characteristics of the system. The effects of dissipation are 
characterized by p~. An increase in p~ is accompanied by a leftward shift of the vertical 
part of the broken line I and an increase in the slope of its lower part. If IMI is fixed 
and IMI < [MI, = p~/~(~ + i), then an increase in D~ will be accompanied by a decrease in 
modulus of the critical value fcr corresponding to the given value of IMI and fcr will approach 
-A, i.e., the system will become more unstable. If IMI > [M[,, then fcr will initially in- 
crease. Beginning with p~ = IMI~(~ + i), fcr will then decrease in terms of its modulus. 
Thus, in a certain sense, an increase in the surface and bulk viscosities will lead to desta' 
bilization of the system. This conclusion -- which at first glance seems paradoxical -- proves to 
be natural for coupled oscillatory systems in general and has analogies in flutter theory and 
the theory of stability of Poiseuille flow, for example. The reason for this phenomenon is 
that the phase relations between perturbation modes are such that these perturbations draw 
on energy from an external source. In our case, this source was the flow of energy across 
the phase boundary. An increase in viscosity may make these relations more optimal from the 
viewpoint of the extraction of energy from the source and, thus, may serve to increase instab- 
ility [i0]. 

In conclusion, we note that it can be shown on the basis of analysis of Eq. (4.1) that 
for two reacting subtances, Marangoni effects may either destabilize a chemically stable system 
or stabilize a chemically unstable system, depending on the kinetics of interfacial processes. 
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CASCADE TRANSFER OF ENERGY, VORTICITY, AND A PASSIVE IMPURITY IN HOMOGENEOUS 

ISOTROPIC TURBULENCE (TWO- AND THREE-DIMENSIONAL) 

A. G. Bershadskii UDC 532.517.4 

Unidimensional turbulence is modeled experimentally in flowsbehind a grid. An extensive 
amount of empirical data has been accumulated on this subject, but several problems arise in 
connection with its analysis. Of primary interest is the reason that different exponents n 
in exponential laws describing the decay of fluctuation energy <u2> ~ t TM are obtained in dif- 
ferent experiments (see [i], for example). It is believed that these differences are connected 
with the "initial" conditions (although the authors of [2] assert that the problem lies in 
the analysis itself). The more refined spectral characteristics of the velocity field (and 
the field regarding a passive impurity) also differ in different experiments [i, 3]. 

Recent investigations have also been concerned with quasi-two-dimensional turbulence 
realized (as hypothesized) in grid flows of a strongly conducting fluid in a strong transverse 
magnetic field [4-6]. The results of the experiments conducted here are also conflicting. 

It is generally held that the first question that needs to be answered satisfactorily 
is the connection between the spectral characteristics (exponential asymptotes) and the expon- 
ent n in the exponential law of fluctuation energy decay <~> The point is that <u2> is 
coarser than the spectrum, an experimental characteristic. Thus, its measurements are more 
reliable. 

To establish such a connection~ it is necessary to go outside the framework of the scale- 

2 [E(k)dk the range of values of k for which invariant interval because, in the integral <u~> ~-j_ 

0 

E(k) is known should be broad enough to obtain a good approximation of the entire integral 
[3]. As a result, it is necessary to determine additional features of the process of vortex 
breakup (combination). 

A vortex of a certain scale can be subdivided into two, three, or more smaller vortices. 
We will assume that for each fixed scale (wave number k) there is a certain probable multi- 
plicity of subdivisions ~k" Meanwhile, the smaller vortices into which the initial vortex is 
subdivided are of approximately the same dimensions. Since the process of vortex breakup 
(combination) occurs as a result of inertial effects, we will assume that the inertial interac- 
tion of the vortices is realized mainly during the subdivision (combination). As a result 
of formalization of this physical hypothesis, we obtain an equation for the spectral function 
of the velocity field which accounts for the spectral hypotheses of Kolmogorov-Obukhov (for 
three-dimensional turbulence) and Kraichnan-Batchelor (for two-dimensional turbulence). The 
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